skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Chenyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 15, 2025
  2. Santhanam, Rahul (Ed.)
    Given a local Hamiltonian, how difficult is it to determine the entanglement structure of its ground state? We show that this problem is computationally intractable even if one is only trying to decide if the ground state is volume-law vs near area-law entangled. We prove this by constructing strong forms of pseudoentanglement in a public-key setting, where the circuits used to prepare the states are public knowledge. In particular, we construct two families of quantum circuits which produce volume-law vs near area-law entangled states, but nonetheless the classical descriptions of the circuits are indistinguishable under the Learning with Errors (LWE) assumption. Indistinguishability of the circuits then allows us to translate our construction to Hamiltonians. Our work opens new directions in Hamiltonian complexity, for example whether it is difficult to learn certain phases of matter. 
    more » « less
  3. Quantum simulation is a prominent application of quantum computers. While there is extensive previous work on simulating finite-dimensional systems, less is known about quantum algorithms for real-space dynamics. We conduct a systematic study of such algorithms. In particular, we show that the dynamics of a d -dimensional Schrödinger equation with η particles can be simulated with gate complexity O ~ ( η d F poly ( log ⁡ ( g ′ / ϵ ) ) ) , where ϵ is the discretization error, g ′ controls the higher-order derivatives of the wave function, and F measures the time-integrated strength of the potential. Compared to the best previous results, this exponentially improves the dependence on ϵ and g ′ from poly ( g ′ / ϵ ) to poly ( log ⁡ ( g ′ / ϵ ) ) and polynomially improves the dependence on T and d , while maintaining best known performance with respect to η . For the case of Coulomb interactions, we give an algorithm using η 3 ( d + η ) T poly ( log ⁡ ( η d T g ′ / ( Δ ϵ ) ) ) / Δ one- and two-qubit gates, and another using η 3 ( 4 d ) d / 2 T poly ( log ⁡ ( η d T g ′ / ( Δ ϵ ) ) ) / Δ one- and two-qubit gates and QRAM operations, where T is the evolution time and the parameter Δ regulates the unbounded Coulomb interaction. We give applications to several computational problems, including faster real-space simulation of quantum chemistry, rigorous analysis of discretization error for simulation of a uniform electron gas, and a quadratic improvement to a quantum algorithm for escaping saddle points in nonconvex optimization. 
    more » « less
  4. null (Ed.)
    We initiate the study of quantum algorithms for escaping from saddle points with provable guarantee. Given a function f : R n → R , our quantum algorithm outputs an ϵ -approximate second-order stationary point using O ~ ( log 2 ⁡ ( n ) / ϵ 1.75 ) queries to the quantum evaluation oracle (i.e., the zeroth-order oracle). Compared to the classical state-of-the-art algorithm by Jin et al. with O ~ ( log 6 ⁡ ( n ) / ϵ 1.75 ) queries to the gradient oracle (i.e., the first-order oracle), our quantum algorithm is polynomially better in terms of log ⁡ n and matches its complexity in terms of 1 / ϵ . Technically, our main contribution is the idea of replacing the classical perturbations in gradient descent methods by simulating quantum wave equations, which constitutes the improvement in the quantum query complexity with log ⁡ n factors for escaping from saddle points. We also show how to use a quantum gradient computation algorithm due to Jordan to replace the classical gradient queries by quantum evaluation queries with the same complexity. Finally, we also perform numerical experiments that support our theoretical findings. 
    more » « less